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Solid state

In solid state, the particles (molecules, ions or atoms) are closely
packed. These are held together by strong infermolecular
attractive forces (cohesive forces) and cannot move al random,
These are held at fixed positions and surrounded by
other particles, There is only one form of molecular motion in
solids, namely vibrational motion by virtue of which the particles
move about fixed positions and cannot easily leave the solid
surface. The following general charactenistics are exhibited by
solids:

(I} Definite shape and volume: Unlike pases and liquids,
solids have definite shape and rigidity. This is due to the fact that
constitvent particles do not posséss enough energy 1o move about
to take-up different positions, Solids are charactensed by their
definite volume which does not depend on the size and shape of

the container. This 15 due to close packing of molecules and
strong short range intermolecular forces between them,

{ii} High density and low compressibility: Solids have
generally high density and low compressibility dee o close
packing of molecules which eliminates free space herween
miclecules.

(iiiy Very slow diffusion: The diffusion of solid is
negligible or rather very slow as the particles have permanent
positions from which they do not move easily.

(iv) Vapour pressure: The vapour pressure of solids is
generally much less than the vapour pressure of liquids at a
definite temperature, Some particles near the surface may have
high cnergies (kinetic) as to move away and enter the vapour
state,



{¥) Meliing poini: The temperature at which the solid and
the liquid forms of a substance exist at equilibrium or both the
forms have same vapour pressure, is called the melting point. On
supplying heat energy, the particles acquire sufficient eneegy and
move away from their fixed positions in space. This results in the
formation of liquid state. The solids have definite melting points
depending on the strength of binding energy. However, in some
solids (amorphous solids)* the melting point is not sharp.

4,13 FORMS OF SOLIDS

Solids are divided into two classes on the basis of haphazard and
regular amangement of the building constituents.

(i)} Amorphous solids: The term ‘amorphous’ has been
derived from a Greek word ‘Omorphe’ meaning shapeless. [n
amorphous solids the arrangement of building constituents is not
regular but haphazard. Although these solids possess some of the
mechanical properties such as  rigidity, incompressibility,
refractive index, ctc., but do not have characteristic shapes or
geometrical forms, Amorphous solids in many respects resemble
liquids which flow very slowly at room temperature and regarded
as supercooled liquids in which the cohesive forces holding the
molecules together are so great that the matenal is rigid but there
is no regularity of the structure. Glass, rubber, plastics, ete., are
some of the examples of amorphous solids.

Amorphous solids do not have sharp melting points. For
cxample, when glass is heated, it softens and then starts flowing
without undergoing any abrupt change from solid to liquid state.

Thus, amorphous substances are not true solids but can be
regarded as intermediate between liquids and solids.

(i} Crystalline solids:
constituents amrange themselves in regular manner throughout the
entire three-dimensional network. The ordered arrangement of
building constituents (molecules, atoms or ions) extends over a
large distance. Thus, crystalline solids have long range order. A
crystalling solid consists of a large number of umits, called
crystals. A erystal is defined as a solid figure which has a
definite geometrical shape, with flat faces and sharp edges.

A crystalline substance has a sharp melting point, i e, it
changes abruptly into liquid state. Strictly speaking “a solid state
refers to crystalline state’ or “only a crystalline substance can be
considered to be a true solid”.

4.14_ ISOTROPY AND ANISOTROPY

The substances which show same properties in all directions are
said to be isotropic and the substances exhibiting directional
differences in properties arc termed anisotropic.

- Amorphous solids like liquids and gases are said to be
isoropic as arrangement of building constituents is random and
disordered. Hence, all directions are -equal and therefore,
properties are zame in all the directions,

In crystalline solids, the building

Crystalline solids are amisotropic. Magnitude of some of the
physical properties of crystalline solids such as refractive index,
cocfficient of thermal expansion, electrical and thermal
conductivities, etc., is different in different directions, within the
crystal, For example, in the crystal of silver iodide {Agl), the
coefficient of thermal expansion is positive in one direction and
negative in the other direction. '

Fig. 4.21 Anisotropic behaviour of crystals .

The phenomenon of anisotropy provides a strong evidence for
the presence of ordered molecular arrangement in crystals. This
can be explained with the help of Fig. 4.21 in which a simple two
dimensional arrangement of two different kinds of atoms has
been depicted. When a physical property 15 measured along the
slanting line CI, it will be different from that measured in the
direction of vertical line 48, as line CO contains alternate types
of atoms while line A8 contains one type of atoms only.

4.15 DIFFERENCES BETWEEN ¢

CRYSTALLINE AND AMORPHOUS .
SOLIDS '

CrystallindSolids Amorphous solids

1. They hove definite and regular | They do nnl have any pattern of
geometry due to definite and or- | arangement of atoms, ions or
derly amrangement of atoms, ions | molecules and, thus, do not have

or molecules i three dimen- | any definite peometrical shape.
‘sional space.

2, They have sharp melting pcrhis‘ Amorphous solids do oot have

and change abruptly into liquids. .| sharp melting points and do ot
change abraptly into liguids.
3. Crystalline solids are | Amorphous solids are isotropic,

amsotropic. Some of their physi-
cal propertics are different in dif-

Their physical propertics are
same in all directions.

ferent directions,
4. These are considered as true so0l- | These are considered pseudo-
ids. solids or supercooled liguids,

3. Crystalline solids are rigid and | Amorphous solids are not very

their shape = nof distorted by
mild distorting forces:

rigid. These can be distorted by
bending or compressing forces.

* Melting pn.im of a solid depends on the structure of the solid. 1t iz used for the identification &f solids whether it i crystalline or amorphous,



Crystalline solids

Amorphous sollds

6. Crystals are bound by planc
faces. The angle between any
two fiaces is called mterfacial an-
gle. For a given crystalline solid,
it is a definite angle and remains
always comstant no matter how

Amorphous solids do not have
well defined planes,

When an amorphous sobid is bro-
ken, the surfaces of the broken
pieces are generally not flal and
imtersect at random angles.

the faces develop,
When a crystalline solid is ham-
mered, it breaks up into smaller
« 5 of the same geometr-cal
shape. .

7. An imporant property of crys-
fals is their symmetry. There are:
{1} plane of symmetry, (i) axis of
symmetry and (iii) centre of
SYMMELry.

any symmetry,

416 TYPES OF SYMMETRY IN CRYSTALS

(i) Centre of symmetry: It is such an imagmary point within
the crystal that any-line drawn through i inersects the surface of
the crystal at equal distances in both directions. A crystal always
possesses only one centre of symmetry [Fig. 4.22 (1))

(ii) Plane of symmetry: It is an imaginary plane which

passes through the centre of a crystal and divides it into two equal |

portions such that one part is exactly the mirror image of the
ather,

A cubical crysial like NaCl possesses, in all, nine planes of
symmetry; three rectangular planes of symmetry and six diagonal
planes of symmetry. One plane of symmetry of each of the above
is shown in Fig. 4.22 (a) and (b).

B
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Fig. 422 Various elements of symmetry in a cubic crystal

HAxis of three-fold
symmetry (hour)

(Hii) Axis of symmetry:’ It- is an umg,mary sl:rught line
about which, if the crystal is rotated, it will present the same
appearance more than once during the complete revolution. The

Amorphous solids do not have _

axes of symmetry are called diad, triad, tetrad and hexad,
respectively, if the original appearance is repeated twice (after an

-- angle of 1807), thrice (after an angle of 120°), four times (after an

angle of 90°) and six times {after an angle of 60°) in one rotation.

These axes of symmetry are also called two-fold, three-fold,
tour-fold and six-fold, respectively.

In general, if the same apgeararm of a crystal is repeated on

rotating through an angle GTE , around an imaginary axis, the
"o

axis is called an n -fold axis.

In all, there are 13 axes of symmetry possessed by a cubical
erystal Tike NaCl as shown in Fig. 4.22 (c), (d) and (¢).

(iv} Elements of symmetry: The total number of planes,
axes and centre nfs'ﬂmﬁelry possessed by a erystal are termed as

elements of symmetry. A cubic crystal posscsses a total of 23
elements of symmetry.

Planes of symmetry = {3+ 6)=9 [Fig. 4.22 {a} and (b}]

Axes of symmetry =(2+4+6)=13
[Fig. 4.22 {c), (d} and ()]

Centre of symmetry =1 [Fig. 4.22 (f)]

Total number of symmetry clements = 23

4.17. SPACE LATTICE AND UNIT CELL

Al crystals arggpolyhedra consisting of regularly repeating arrays
of atoms, molecules or ions which are the structural units. A
crystal is a homogeneous portion of a solid substance made of
repular pattern of structural woits bonded by plane surfaces
making definite angles with each other. The geometrical form
consisting only of a regular armay of points in space 15 called a
lattice or space lattice or it can be defined as an array of points
showing how molecules, atoms or tons are arranged in different
sites, in three-dimensional space. Fig. 4.23 shows a space lattice. A
space lattice can be subdivided into a number of small cells
known as unit cells. It can be defined as the smallest repeating
unit in space lattice which, when repeated over and over again,
results in & crystal of the given substance or it is the smallest
block or geometrical figure from which entire crystal can be buih
up by its translational repetition in three-dimensions. A onit cell
of a crystal possesses all the structural propertics of the given
crystal. For example, if a crystal is a cube, the unit cell must also
have its atoms, molecules or jons aranged so0 as to give a cube.

Fig. 4.23 Space lattiee and unit cell



' = i
System Hidges Angles Ty Examples
1. Cubic - ATl the three equal | All night angles Minc planes, Nall, KCI, Zn3, diamond,
a=h=g, g=f=y =W thirteen axes ahims
1. Orthorhombie All unequal All dight angles Three planes, KNO,y, BaS0, K50, mombic
gehde, a=f=y=ie three axes sulphur.
3. Tetragomal Two equal All right angles Five planes, Ti,, PoW 0, Sa0,, NH, Br
g=bec, a=fi=y=H° . five axes )
4. . Maongelinic All unequal Two right angles Oue plane, Menaclinie sulphur, KCIO,,
. arhze, @=y=00F = 0p° ORE axis Cal0, - IH0,
NayB,0,-10H,0
5 Triclnic All unequal Mone right angles | No planes, Cus0, - 5H,0, H,BO,,
awhwe, owfey e o) . no axis K Cry(y e
6. Hexagonal Two equal Angle between equal | Seven planes, Zn0, CdS, Hgs, SiC, Agl
a=hbzeo=p=00"y=120" .edges-lztr“ SEVET aXcs
7. Rhombohedral Allthree equal | All equal but none| Seven planes, | NaNO,, ICl, quartz (CaCO, )
ﬂ:&:ﬂ.ﬂ:ﬂ.:l{*w ap- BENEN AXES
Each unit cell has three vectors a, band ¢ as shown in Fig. 4.23. .
The distances g, band ¢ are the lengths of the edges of the unit
cell and angles o, B and v are the angles berween three imaginary © ‘o ol |e
axes OX, OF and OF, respectively. Al b B a BT b
For exmmple: For a crysal sysiem, a=b=c¢ and il - i
oefley 000 I oy “a] Simple of primifve  Body-centrad Face-centred
{a) tetragona } hexago: Cubic lati
{¢) rhiombohedral (d) monoclinic (&) Cubic apace laces
[Ams. (2)] -
[Hint: From the table o = b = ¢ ftr rhombohedral and cubnc : .
systemn both but o = [F'=y ¥ 90° for thombohedral only,] N C o of° o |off .
. ST Y D S B
418 CRYSTAL SYSTEMS - i 15 e
COm the basis of geometrical considerations, theoretically there Si Body-cenired Bnd-cantred Face-centred
ean Bbe 32 different comrbinations of elemeats of symmetry of a pi.”i?ﬁa?@' " ) ' §
erystal, These are called 32 systemns. Sorme of the systems have () Crthorhombic space latlices
been grouped together. In all, seven typés of basle or primitive
unit cells have been recognised among orystals, These are cubic, A
orthorhombic, tetragonal, monoclinic, triclinic, hexagonal and - - 2
thombohedral. These are shown in Fig. 4.24 and their 8 Lo pl.e Bl Bl
characteristics are summarised in the following table. o s . bt .
All crystals do not have simple lattices, Some are more 1 . ! X
complex. Bravais pointed out that there can be 14 different ways Smple  Body-cenired Simple  End-cenfred

in which similar points can be ammanged in a three-dimensional
space. Thus, the total number of space lattices belonging to all the
seven crystal svsicms are 14,

The erystals belonging to cubic system have three kinds of
Bravais lattices, These are: )

(i} Simple cubic lamice: There are points only at the comers
of each unit.

(liy Face-cemtred cubic lattice: There are points at the corers
as well as at the centre of each of the six faces of the cube.

iz} Tetragonal and monaclinic space lattices

%b X

-

Triclinic Hexagonal Bhambehedral
(dly Triclinic, hexagonal and rhombohedral space lattices

Fig. 4.24 Bravais lattices



(i) Body-centred cubic laftice:  There are points al the

comers as well as in the body-centre of sach cube.
The number of Bravais space lattices in a given system is
listed in the following table and shown in Fig. 4,24,

' No. of . Lo
) ‘I:}IIM! stal space | Lattice type .
1. Cubic 3 Simple, face-centred and body-centred.

Rectangular and body-centred rectan-

1. Orthorhombic 4
‘ gular prism; rhombic asid body-cenired

rhombic prism.

3. Tetragonal I'  |simple and body-centred tetragonal
prigm

4. Monoclinic 2 Monoclinic paralleiopiped, monoelinic
face-cenired paralielopiped.

5. Triclinic 1 Triclinic parallelopiped.

6. Hexagonal I Hexagonal prism.

7. Rhombohedral I |Rhombohedron.

In various unit cells, there are three kinds of lattice points:
points located at the comers, points-in the face-centres and points
that lie entirely within the unit cell. In a crystal, atoms located at
the comer and face-centre of a unit cell are shared by other cells
and only a portion of such an atom actually lies within a given
unit cell,

(i} A point that lies at the corner of a unit cell is shared among
eight unit cells and, therefore, only one-eighth of each such point
ligs within the given unit eell.

(i) A point along an edge is shared by four unit cells and only
one-fourth of it lies within any one cell.

(i1} A face-centred point is shared by two unit cells and only
ane half of it is present in & given weit cell,

(iv) Abody-centred point lies entirely within the unit cell and’

contribufes one complete point to the cell.

Type of lattice polut Contribution to oae unit cell
Corner '8

Ede 14

Face-centre 12

Bady-centre 1

Total number of constitient units per unit cell
= % ® oocupied corners + % ® occupied edpe- centres

+ -i-z- = pecupied face-centres + occupia:d'h-ndy-ocnm.

Determination of Number of Constituent units pev urnit cell:
Let edge length of cube = a cm
Density of substance = d g cm™

Volume of unit cell = 2’ cm”

Mass of unit cell = volume x density = (a® % d )g

@’ wd

Number of mol per unit cell =
where, M = molar mass

Mumber of molecules per unit cell = Number of mole .
* Avogadeo’ s numboe
"y -
z'a dehrzﬂ' ®dwN
M M

Calculation of number of mnsﬂluaﬂt units in
hexagonal unit cell

(i} Constituent units st each comer of u!i:t‘ml] is eomEmon-
among six unit cells hence contnbate 1/6th to each unit cell.

(i) Constituent unit at edge is common to three unit cells
hence contribute 1/3rd to each unit cell.

{iii) Constitwent units present at the body centre is considered
in single unit cell.

{iv) Constituent unit at face centre is common between two
unit cells hence contribute 12 10 each unit cell.

Fig. 4.25 Hexagonal unit cell

In the hexagona vmit cell (Fig 4.25), 12 comers, 2 face ceniras
and 3 constituent wnits wathin the unit cells are oceupied, hence
effective number of constituent units present in the unit cell may
be calculated as
i ﬂl:l'."F.qJ:I'l:d
45 COMMETS

lxti-i- ;x2+3

6
=6

occupied ‘Central

= 2 face clutres  constituent units

4.19 DESIGNATION OF PLANES IN
CRYSTALS—MILLER INDICES

Planes in crystals are described by a set of integers (b, kand £)

“known as Miller indices. Miller indices of a plane are the

reciprocals of the fractional intercepts of that plane on the various
crystallographic axes. For calculating Miller indices, a reference
plane, known as parametral plane, is selected having intercepis
a, band ¢ along x, yand z-axes, respectively (Fig. 4.26). Then,
the intercepts of the unknown plane are given with respect 1o
a, band ¢ of the parametral plane.



Flg. 426 Parametral (intercepts a, b, calong x, yand zaxes)

Thus, the Miller indices are;
h=

[}
intercept of the plane along x- axis
_ b
- intercept of the pls.m: along y- axis
“' a
B intercept of the planc along z - axis
Consider the shaded plane ABD in Fig. 4.26. The intercepts of

the shaded planc along X, ¥ and Z-axes are a/2, b and o/2,
respectively. Thus,

cf 2
The plane is, therefore, designed ag (212) plane.
Mote: (1) If a plane is parallel to an axis, is intercept with that axis is
taken as infinite and the Miller indices will be zero.
{ii) While defining Miller indices for orthogonal crystal, X, ¥ and
Z-axes are considered crysiallographic axes,
Some of the important planes of cubic crystals are shown in
Fig. 4.27.

Z

— —Y

100 110 VARt

@ (0) e
Figl. 427 Miller indices of planes in cubic latiice

g

In (a) intercepis are | e @

5o, Miller indices are | 0 0
The plane is designated (100} .

In (b} intercepts are | 1 oo

S0, Miller indices are | I ]
The plane is designated (110) :

In (c) intercepis are 1 1 1

So, Miller indices are | 1 1

The plane is designated (111)
The distances between the parallel planes in crystals ane
designated as 4, . For different cubic lattices these interplanar
spacings are given by the general formula,

i

gy = ———e
YR+ kP 4t
where, a is the length of the cube side while h, k and [ are the
Miller indices of the plane.
The spacings of the three planes (100), (1100 and {111} of
simple cubic lattice can be calculated.
i

d ==
{10
.|I'|1+U+u
[r} o
d - — o —
ih iy
P+1P+0 2
a i
d = —— e S—
iy
| S S

The raiio is,
1 1

dyom dmm day =1-’—5'-—=1 (0707 ;0577

5
&

Similarly, a;,,, ratios for face-centred cubic and body-centred
cubic can be calculated. For face-centred cubic,

d{l‘l& ;dl_lll;l} iy = =1:0.707: 1.154

.2
=i

-a|,—

For body-centred cubic,

Hh—'

d[lm d" oy - lﬂlI:lll;l

'—'b-'l
‘w|“

1.
o
I«fi

=1:1414:0.577

4.20 CRYSTALLOGRAPHY AND X-RAY
DIFFRACTION

Crystallography is the branch of science which deals with the
geometry, properties and structure of crystals and crystalline
substances. Geometric crystallography 15 concerned with the
éxternal spatial amangement of crystal planes and geometric
shapes of crystals.



